News

  • 0
  • 0

The Most Heat-resistant Material in the World

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Europe's largest economy, Germany, recently activated an emergency plan to manage gas supplies that the natural gas could be rationed if supplies are disrupted or disrupted by a stand-off over Russian demands to pay for fuel in rubles.  

German Vice-Chancellor, minister of economy and climate protection, said Germany's gas supplies were secure for now, but he urged consumers and businesses to reduce consumption, saying "every kilowatt of electricity counts." 

Germany's gas network regulator can ration gas if supplies run short. Plants would be the first to be affected. Special treatment will be provided to private families, hospitals, and other important institutions.  

Half of Germany's 41.5 million households use natural gas for heating, and industry consumption accounts for a third of the country's 100 billion cubic meters of gas demand in 2021.  

The price of many energy and commodities like the tantalum carbide powder could be affected.


Researchers have developed two new heat-resistant materials, tantalum carbide (TaC) and hafnium carbide (HfC), which can withstand temperatures up to nearly 4000.
 
It is worth mentioning that the research team from Imperial College London also found that the melting point of hafnium carbide set a new record in the field of materials. Considering the ability of the two materials to withstand extremely high temperatures of nearly 4000 , the two materials are likely to be used in even harsher and extreme environments, such as the thermal shields of the next generation hypersonic spacecraft.
 
Both tantalum carbide and hafnium carbide are refractory ceramics, which means that these two materials have excellent heat resistance. The ability of the two materials to withstand extreme environments means that their potential applications may include thermal protection systems for high-speed spacecraft and fuel cladding in nuclear reactors in superthermal environments. However, because there is no technology to test the melting point of TaC and HfC in the laboratory, it is uncertain whether they are really competent to work in extreme environmental conditions.
 
To this end, researchers have developed a new extreme heating technology that uses lasers to test the heat resistance of TaC and HfC. Using this technique, the researchers determined the melting points of the single substance and mixture of TaC and HfC, respectively. The study was recently published in the journal Scientific Reports.
 
They found that the measured melting point of the mixture of two kinds of ceramics (Ta0.8H2O20C) was consistent with the previous results, reaching 3905, but the melting point of the two compounds themselves was higher than previously found: The melting point of TaC was 3768, while that of HfC was 3958.
 
The emergence of these two materials will pave the way for the development of the next generation of hypersonic aircraft, the researchers said. This means that future spacecraft can become much faster than ever before.
 
The study was carried out by Dr Omar Dilos Balazar (Omar Cedillos Barraza) during his PhD in the Physics Department of Imperial College London.
 
"When an aircraft flies at a hypersonic speed of more than Mach 5, its friction with the air creates a very high temperature," Dr. Sediros Balazar said. So far, neither TaC nor HfC has been used in the development of hypersonic aircraft. However, our new findings show that these two materials are more heat-resistant than we previously thought, and in fact their heat resistance has exceeded that of any other known compound. This fact means that they may be used for new types of spacecraft: in the atmosphere, they can fly like ordinary aircraft and then fly through space at hypersonic speeds. These two materials enable the spacecraft to withstand the extreme heat generated by shuttling between the atmosphere. "
 
Examples of potential uses of TaC and HfC are the nose covers of spacecraft and the edges of external instruments that have the most friction with the outside world during flight.
 
At present, spacecraft with more than Mach 5 are not yet capable of manned flight. But Dr Sederos Balazar points out that this dream is likely to come true in the future.
 
Dr Sederos Balazar added: "our tests show that these two materials have great potential in building future space spacecraft. The fact that these two materials can withstand such high extreme temperatures means that it is really possible for manned hypersonic spacecraft to emerge in the future. If we can fly at Mach 5, the flight time from London to Sydney will only take about 50 minutes, which will open up a new continent with new business opportunities for countries around the world. "
 

Tantalum Carbide TaC and Hafnium Carbide HfC Powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality TaC powder and HfC powder, please feel free to contact us and send an inquiry. ([email protected])

 

U.S. oil prices surged about 10% to $105.14 a barrel. This is the highest level since 2014. The world benchmark Brent stock futures oil price soared by about 8% to $105.40 per barrel. The most direct rise in crude oil is inflation. The rise in oil prices means that people's food, clothing, housing, tantalum carbide powder also fluctuates. If you want to know the tantalum carbide powder, please feel free to contact us.

Inquiry us

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

High Purity Copper Oxide CuO powder CAS 1317-38-0, 99.9%

High Purity Colloidal Gold Nano Gold Solution CAS 7440-57-5

How to determine the optimum dosage of concrete superplasticizer

Factors affecting the effect of concrete superplasticizer

Why should polycarboxylate superplasticizer be added to concrete

What Role Do Early Strength Agents Play?

What is the 3D Printing Metal Powder

What are Ni-Ti Alloys?

What are Commonly Used Milling Cutter Coatings?

What Is Graphite Lubricant?

The rising price of coke also has a certain impact on the price of the automatic cut to length line

How does Concrete Superplasticizer Change the Strength of Concrete?

Researchers Developed Graphene-based Foam Composites For Efficient Water Filtration

What is Manganese Dioxide MnO2 Used For?

What is Boron Carbide Used For?

What are Molecular Sieves Used For?

What is Nano Silica Used For?

Our Latest News

Application Fields of 316L Stainless Steel Powder

Stainless Steel Powder 316L - Application Fields 316L stainless steel Powder This metal powder is used widely in many fields because of its outstanding corrosion resistance. Here is a detailed guide to using 316L stainless-steel powder in variou…

Application Fields of Nickel Based Alloys

Nickel Based Alloys - Application Fields Nickel-based alloy Based on nickel, it is made up of various alloying materials. It has excellent mechanical properties, high-temperature resistance and corrosion resistance. It's used in aviation and aer…

The role of molybdenum in the new energy industry

Molybdenum's role in the New Energy Industry I. Introduction As a result of the recent changes in the global energy market, the energy sector is growing rapidly. The future energy market will include solar energy, biomass, wind, water, and geothermal…