Answers

  • 0
  • 0

What Powder is Used for Metal 3D Printing?

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



After Russia pledged to scale back its military operations around Kyiv and in northern Ukraine, the prices of most industrial metals fell, led by aluminum, showing people's concerns for supply shortage eased.

At an earlier time, the West imposed sweeping sanctions on Russia for its invasion of Ukraine, which aroused concerns about the supply problem because Russia is a major producer of nickel, aluminum, and copper. 

Russia is also a major gas supplier to Europe, where potential supply disruptions are seen as hitting power-intensive aluminum and zinc 3D printing metal powder are still very uncertain.

What Powder is Used for Metal 3D Printing?
Stainless steel (17-4 PH, 316L, 304)
Tool steel (H13, A2, D2)
Special alloy (Inconel iron alloy, cobalt-chromium alloy, etc.)
Titanium (Ti64)
Aluminum (4047, 6061, 7075)
 
Steel 3D Printing
Steel is the most common metal material for 3D printing. Its strength, ability to convert into 3D-printed metal powder, relatively low cost, and post-processability make it a material that can be used in many applications. Most types of steel can be printed: the two most common are stainless steel and tool steel. Not all steel is often printed -- alloy steel, the most common conventional manufacturing method, is rarely printed. Due to their lower conventional manufacturing costs and poor material properties, they are of low value as printing materials. 
 
Stainless steel 
Stainless steel is tough, hard steel with excellent corrosion resistance due to its significant chromium content (at least 12% and often up to 18%). They come in two different varieties, austenite and martensite. 
Austenitic stainless steel is the most common type of stainless steel. They are corrosion resistant and can be machined and welded, but not heat treated. 303 and 304 are the most common austenitic stainless steel types, while 316L is the variant that maximizes corrosion resistance. 
Martensitic stainless steel is much harder than austenitic steel but is more brittle and less resistant to corrosion. Taken as a whole, they lack the versatility of austenitic steels -- however, they can be heat treated and precipitated hardened. They are best when you need hard stainless steel. 17-4 PH is a particularly useful martensitic stainless steel that can be heat-treated to suit a variety of material properties -- it is also the most common martensitic steel, although others have been printed (e.g.420). 
 
Tool steel 
Tool steel is named after its core application -- all kinds of tools. They contain carbides, extremely hard compounds that are essential for their ability to cut, grind, press, shape, or form. In general, they are very hard, durable, and can be used at high temperatures. Tool steels are classified according to the AISI-SAE classification system and classified into types according to function. The three most common types of metal 3D printing are A series, D series, and H series tool steels. 
A Series tool steels are excellent general-purpose tool steels -- they balance wear resistance and toughness and are machinable. There are eight a-series tool sheets of steel, the most common of which is A2. It is versatile tool steel, usually used in the manufacture of punches and dies, but can be used in a variety of applications. 
D Series tool steels are optimized for wear resistance and hardness. They are not particularly tough and are only used for cold working applications. The most common variety of d-series tool steel is D2 -- it's used in all kinds of cutting tools, from blades to industrial cutting tools and even cutting tools. 
H Series tool steels cut and shape materials at high (or circulating) temperatures. They do not wear as well as A or D series tool steels at low temperatures but retain their strength and stiffness well at high temperatures. Although there are many types of H-series tool steels, H13 is the most common type for 3D printing. It combines excellent toughness, wear-resistance, and heat resistance, making it good general-purpose tool steel, optimized for high temperatures (hot working). 
 
Titanium 3D Printing 
While titanium is by no means a common material for routine manufacturing, its unique properties and high base cost make it an ideal choice for 3D printing. It is strong, light, heat resistant, chemical resistant, and biocompatible. Although several different types of titanium can be printed, one is by far the most common: Titanium 64 (Ti-6Al-4V)
Ti64 is the most common type of titanium used in 3D printing and conventional manufacturing. It has an excellent strength-to-weight ratio and can be heat treated to further enhance strength. The material also performs well in harsh environments due to its corrosion and heat resistance. As a result, it is widely used in aircraft (missiles, rockets, aircraft) medicine (as orthopedic implants), and other places that favor a high strength-to-weight ratio. 
 
Aluminum 3D Printing 
Aluminum is notoriously difficult to print. As a result, it is a relatively uncommon printed material, although very common in traditional manufacturing. The variety printed is usually cast grade aluminum, rather than the more common machinable types, such as 6061 or 7075. These cast-grade aluminum alloys all have a significant (up to 12%) silicon content and are weaker and less hard than 6061. It's not immediately clear when aluminum will be more readily used as a material for 3D printing, but until then, materials like steel and titanium have achieved similar strength-to-weight ratios when printed using open-hole fillers. 
 
Special Alloy 
In addition to more common metals, 3D printers can make parts from alloys that are particularly suited to harsh environments. These "superalloys" -- metals with high strength, heat resistance, good surface stability, and resistance to corrosion or oxidation -- can be used in a variety of high-performance applications. Two subgroups are most common: Inconel and cobalt-chromium. 
 
Inconel 
Inconel is the most common and well-known proprietary nickel alloy. It is a very strong, hard, and corrosion-resistant material used in places such as turbines, engine seals, and rockets. There are two main formulas for 3D printing: Inconel 718 is stronger, and Inconel 625 is more heat resistant. Both materials are expensive to process traditionally, making 3D printing a cost-effective alternative to manufacturing high-fidelity parts. 
 
Cobalt chromium 
Cobalt-chromium is a superalloy known for its biocompatibility, high strength-to-weight ratio, and corrosion resistance -- it's essentially a higher-grade, more expensive version of titanium. Like Inconel, it is used in turbines and other harsh environments. Unlike Inconel, it can be used in medical applications as an orthopedic or dental implant. 
 
3D Printing Powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest 3D printing powder price, you can send us your inquiry for a quote. ([email protected])
 
3D Printing Powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality 3D printing powder, please feel free to contact us and send an inquiry. ([email protected])

 

Due to the Russia-Ukraine conflict and the covid-19 pandemic, how will the international situation develop is highly uncertain. It is too difficult to assess its economic impact properly. However, we could see energy prices and commodity prices keep rising and supply chains are disrupted. Therefore, 3D printing metal powder prices are expected to rise in the future.

Inquiry us

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

High Purity Copper Oxide CuO powder CAS 1317-38-0, 99.9%

High Purity Colloidal Gold Nano Gold Solution CAS 7440-57-5

How to determine the optimum dosage of concrete superplasticizer

Factors affecting the effect of concrete superplasticizer

Why should polycarboxylate superplasticizer be added to concrete

What Role Do Early Strength Agents Play?

What is the 3D Printing Metal Powder

What are Ni-Ti Alloys?

What are Commonly Used Milling Cutter Coatings?

What Is Graphite Lubricant?

The rising price of coke also has a certain impact on the price of the automatic cut to length line

How does Concrete Superplasticizer Change the Strength of Concrete?

Researchers Developed Graphene-based Foam Composites For Efficient Water Filtration

What is Manganese Dioxide MnO2 Used For?

What is Boron Carbide Used For?

What are Molecular Sieves Used For?

What is Nano Silica Used For?

Our Latest Answers

What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will…

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum diulfide Molybdenum disulfide (also known as MoS2) is a transition metal sulfide. It is dark grey, or black, solid. The layers of the crystal structure are made of alternately arranged molybdenum-sulfur atoms. Molybdenum d…

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete? 1. The cement proportion problem: Some workers in construction will add more water for a mo…