Towards next-generation molecule-based magnets
Magnets are to be found everywhere in our daily lives, whether in satellites, telephones or on fridge doors. However, they are made up of heavy inorganic materials whose component elements are, in some cases, of limited availability.
Now, researchers from the CNRS, the University of Bordeaux and the ESRF (European Synchrotron Radiation Facility in Grenoble) have developed a new lightweight molecule-based magnet, produced at low temperatures, and exhibiting unprecedented magnetic properties. This compound, derived from coordination chemistry, contains chromium, an abundant metal, and inexpensive organic molecules. This is the first molecule-based magnet that exhibits a 'memory effect' (i.e. it is capable of maintaining one of its two magnetic states) up to a temperature of 240 °C. This effect is measured by what is known as a coercive field, which is 25 times higher at room temperature for this novel material than for the most efficient of its molecule-based predecessors. This property therefore compares well with that of certain purely inorganic commercial magnets. The discovery, published on 30th October in Science, opens up highly promising prospects, which could lead to next-generation magnets complementary to current systems.
MIS-ASIA is an online content marketing platform that has a large number of visitors worldwide. It is considered to be the leading IT, mechanical, chemical, and nanomaterial information distributor in the Asia-Pacific region. The MIS-ASIA website provides high-quality articles and news on digital information technology, mechanical technology, nanotechnology, biology and science for scientists, engineers and industry experts, machinery suppliers and buyers, chemical suppliers and laboratories. If you need advertising and posting service, or you need to start sponsorship, please contact us.Related Articles
'White graphene' structures can take the heat
Well oriented: Catalysts for isotactic polar polypr
Scientists find path to nanodiamond from graphene
2D nitrogenated crystals new potential rival for gr
In the off-season, the internal integration of soda
Who is responsible for the continuous decline of ca
Synthetic chemicals in soils are 'ticking time bomb
Graphene gets competition